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Locally matrix algebras: de�nition

Let F be a ground �eld. All vector spaces are considered over F.
Denote by Mn(F) the algebra of n × n matrices over F.

Finite�dimensional algebras =⇒ in�nite�dimensional algebras.

�Locally semisimple algebras are. . . next in complexity after

�nite�dimensional algebras.� A. Vershik, S. Kerov

De�nition

An associative algebra A is called a locally matrix algebra if for each
�nite subset of A there exists a subalgebra B ⊆ A containing this subset,
such that B ∼= Mn(F) for some n ≥ 1. The algebra A is unital if A ∋ 1.
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Content of the talk

The talk consists of the following parts:

I. Locally matrix algebras: decompositions

II. Automorphisms and derivations of locally matrix algebras

III. Cli�ord algebras

IV. Algebras of in�nite matrices

V. Mackey algebras and groups

VI. Derivations of polynomial algebras in in�nitely many variables
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I. Locally matrix algebras: decompositions

[G. Köthe, 1931]

Every countable-dimensional unital locally matrix algebra A is isomorphic

to a tensor product of matrix algebras:

A =
∞⊗
i=1

Ai , Ai
∼= Mni (F).

[A. Kurosh, 1942]

An example of an uncountable-dimensional unital locally matrix algebra

that is not isomorphic to any tensor product of matrix algebras.
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I. Locally matrix algebras: decompositions

De�nition

A locally matrix algebra A is called primary if there exists a prime p such
that every �nite subset of A lies in a subalgebra isomorphic to Mpn(F) for
some n ≥ 1.

[V. Kurochkin, 1948]

Studied decompositions into tensor products of primary algebras.

Question [V. Kurochkin, 1948]

Is every unital locally matrix algebra decompose into a tensor product of

primary algebras?
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I. Locally matrix algebras: decompositions

For unital countable-dimensional locally matrix algebras,
it follows from Köthe's theorem:

Corollary

Every unital countable-dimensional locally matrix algebra admits a

decomposition into a tensor product of primary algebras.

Remark
1 Kurosh's example of an uncountable-dimensional unital locally
matrix algebra is a primary algebra for prime 2.

2 Cli�ord algebra is a primary algebra, and the generalized Cli�ord
algebra for prime positive integer is also a primary algebra.
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I. Locally matrix algebras: decompositions

Let N = {1, 2, 3, . . . } be the set of positive numbers, and let
P = {2, 3, 5, . . . } be the set of all primes.

De�nition (E. Steinitz, 1910)

A Steinitz (supernatural) number is a formal product s =
∏

p∈P p
rp ,

where each exponent rp ∈ N ∪ {0,∞}. Steinitz numbers are multiplied by
the rule:

∏
p∈P p

rp ·
∏

p∈P p
kp =

∏
p∈P p

rp+kp .

De�nition (O. B. � B. Oliynyk, 2020)

Let A be a unital locally matrix algebra over a �eld F. Let

D(A) = {n ∈ N | there exists 1 ∈ B ⊂ A, B ∼= Mn(F)}.

The least common multiple st(A) = lcmD(A) is called the Steinitz
number of the algebra A.
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I. Locally matrix algebras: decompositions

Remark

Let A be a unital countable-dimensional locally matrix algebra,
A =

⊗∞
i=1

Mni (F). Then st(A) =
∏∞

i=1
ni .

[J. Glimm, 1960]

Let A and B be unital countable-dimensional locally matrix algebras over a

�eld F. Then
A ∼= B ⇐⇒ st(A) = st(B).

[O. B. � B. Oliynyk � V. Sushchansky, 2016]

This approach was extended to many other classes of

countable-dimensional structures.
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I. Locally matrix algebras: decompositions

Theorem 1 [O. B. � B. Oliynyk, 2020]
(1) In the uncountable-dimensional case, the Steinitz number st(A) does

not determine the unital locally matrix algebra A, but it determines

the universal elementary theory of A.

(2) There exists a unital locally matrix algebra that is not decomposable

into a tensor product of primary algebras.

Question [V. Kurochkin, 1948]

Theorem 1(2) gives a negative answer to V. Kurochkin's question.

This part is based on papers:

[1] O.B., B.Oliynyk, Primary decompositions of unital locally matrix algebras,
Bulletin of Mathematical Sciences, 10(1) (2020). Q1

[2] O.B., B.Oliynyk, Unital locally matrix algebras and Steinitz numbers,
Journal of Algebra and Its Applications, 19(9) (2020). Q2
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II. Automorphisms and derivations of locally matrix algebras

Let A be an algebra over a �eld F.

De�nition

A linear bijective mapping φ : A → A is called an automorphism if

φ(ab) = φ(a)φ(b) for all elements a, b ∈ A.

The set of all automorphisms of A forms a group, denoted Aut(A).

This was studied by É. Galois, F. Klein, and many other authors.

De�nition

A linear mapping d : A → A is called a derivation if

d(ab) = d(a) b + a d(b) for all elements a, b ∈ A.

The set of all derivations of A forms a Lie algebra, denoted Der(A).
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II. Automorphisms and derivations of locally matrix algebras

Example (1)

Let L be a Lie algebra with operation [x , y ], and let a ∈ L. The linear
mapping

ad(a) : L → L, ad(a) : x → [a, x ] (x ∈ L),

is a derivation of L.

Example (2)

Let A be an associative algebra, and let a ∈ A. The linear mapping

ad(a) : A → A, ad(a) : x → [a, x ] = ax − xa (x ∈ A),

is a derivation of A. Indeed, A(−) =
(
A, [a, b] = ab − ba

)
is a Lie algebra.

De�nition

Derivations from Examples (1) and (2) are called inner derivations.
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II. Automorphisms and derivations of locally matrix algebras

Example (3)

Let A be an algebra. The conjugation φ : A → A, φg : x → gxg−1, by the
invertible elements g ∈ A is an automorphism of A.

De�nition

Automorphisms from Examples (3) are called inner automorphisms.

Remark

Let d : A → A be a derivation. Suppose the the exponential series

φ = exp(d) = Id+d +
d2

2!
+ · · ·

makes sense (topological or any other). Then φ is an automorphism.
Hence,

derivations are �in�nitesimal automorphisms�
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II. Automorphisms and derivations of locally matrix algebras

Let's denote:
Der(A) � the Lie algebra of all derivations of A.
Inder(A) � the Lie algebra of inner derivations is

an ideal in Der(A).
Outder(A) = Der(A)/Inder(A) � the Lie algebra of

outer derivations.

We will describe all automorphisms and derivations of the unital
countable-dimensional locally matrix algebra

A =
∞⊗
i=1

Ai , Ai
∼= Mni (F).
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II. Automorphisms and derivations of locally matrix algebras

[H. Strade, 1999]

Studied derivations of countable-dimensional (diagonal) locally simple Lie

algebras over a �eld of characteristic 0.

Question

How large is the Lie algebra of outer derivations Outder(A)?

[S. Ayupov � K. Kudaybergenov, 2020]

The algebra A = ⊗∞
i=1

Mni (F) has an outer derivation.
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II. Automorphisms and derivations of locally matrix algebras

We describe derivations of the algebra A = ⊗∞
i=1

Ai , Ai
∼= Mni (F).

De�nition

Let P be a system of nonempty �nite subsets of N. We say that P is
sparse if:

1 for any S ∈ P, all nonempty subsets of S also lie in P,
2 an arbitrary element i ∈ N lies in no more then �nitely many subsets

S ∈ P.

If S = {i1, . . . , ir}, then denote

AS = Ai1 ⊗ · · · ⊗ Air .

Choose for each S ∈ P an element aS ∈ AS . Then the (possibly in�nite)
sum ∑

S∈P
ad(aS)

converges (in the Tychono� topology) to a derivation of A.
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II. Automorphisms and derivations of locally matrix algebras

Fix a sparse system P. Consider the vector space of all in�nite convergent
sums of inner derivations:

DP =
{ ∑

S∈P
ad(aS)

∣∣∣ aS ∈ AS , S ∈ P
}
.

In each subalgebra Ai , choose a subspace A0

i ⊂ Ai so that

Ai = F · 1Ai
⊕ A0

i (direct sum).

In each A0

i �x a basis Ei , and for each �nite S = {i1, . . . , ir} ∈ P, let

ES = Ei1 ⊗ · · · ⊗ Eir = { ei1 ⊗ · · · ⊗ eir | eij ∈ Eij }.
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II. Automorphisms and derivations of locally matrix algebras

Theorem 2 [O. B., 2021]

1 The Lie algebra of all derivations of A = ⊗∞
i=1

Mni (F) is given by

Der(A) =
⋃
P

DP ,

where the union runs over all sparse systems P.

2 The set ⋃
S∈P

ad(ES)

is a topological basis of the vector space DP .

3 The Lie algebra Inder(A) is dense in Der(A) in the Tykhonov topology.
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II. Automorphisms and derivations of locally matrix algebras

Theorem 3 [O. B., 2021]

Let A be a countable-dimensional locally matrix algebra. Then

dimFDer(A) = dimFOutder(A) = |F|ℵ0 .

Remark

So, the Lie algebra of (outer) derivations is not too small.

This part is based on the paper:

[1] O.B., Derivations and automorphisms of locally matrix algebras,
Journal of Algebra, 576 (2021), 1-26. Q1
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II. Automorphisms and derivations of locally matrix algebras

We describe automorphisms of the algebra A = ⊗∞
i=1

Ai , Ai
∼= Mni (F).

Let Hn = {conjugations by invertible elements from An ⊗ An+1 ⊗ · · · }.
Then

H1 > H2 > · · · ,
⋂
n≥1

Hn = (1).

Choose for each n ≥ 1 a system Xn of representatives of left cosets of the
subgroup Hn+1 in Hn, so

Hn =
⊔
x∈Xn

x Hn+1, and we assume 1 ∈ Xn.

Every in�nite product φ = φ1 φ2 φ3 · · · , where φn ∈ Xn, converges (in
the Tykhonov topology) to an injective endomorphism φ : A → A.
We write succinctly φ = φ1 φ2 · · · .
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II. Automorphisms and derivations of locally matrix algebras

Theorem 4 [O. B., 2021]

Every unital injective endomorphism φ : A → A can be uniquely

represented as

φ = φ1 φ2 · · · , where φn ∈ Xn, n ≥ 1.

Moreover, there are simple necessary and su�cient conditions on the
sequence φn, n ≥ 1, under which φ is in fact an automorphism.

Theorem 5 [O. B., 2021]

Let A be a countable-dimensional locally matrix algebra. Then∣∣Aut(A)∣∣ =
∣∣F∣∣ℵ0 .

This part is based on the paper:

[1] O.B., Derivations and automorphisms of locally matrix algebras,
Journal of Algebra, 576 (2021), 1-26. Q1
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III. Cli�ord algebras

Cli�ord algebra was �rst de�ned by William Cli�ord
in the late 19th century.

In 1878, Cli�ord greatly expanded on Grassmann's work to the form what
are now usually called Cli�ord algebras in his honor. Cli�ord himself chose
to call them as geometric algebras.

De�nition

Let F be a �eld of characteristic not equal to 2. Let V be a vector space
over F. A mapping f : V × V → F is called a quadratic form if
(1) f (λv) = λ2f (v),
(2) f (v ,w) = f (v + w)− f (v)− f (w) is a bilinear form.
A quadratic form f is nondegenerate if the bilinear form f (v ,w) is
nondegenerate.
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III. Cli�ord algebras

De�nition

The Cli�ord algebra Cℓ(V , f ) is generated by the vector space V and
unit 1 with de�ning relations

v2 = f (v) · 1 for v ∈ V .

If {vi}i∈I is a basis of the vector space V and the set of indices I is
ordered, then the set of ordered products

vi1 · · · vik , where i1 < i2 < . . . < ik , and 1,

form a basis of the Cli�ord algebra Cℓ(V , f ).

Oksana Bezushchak Locally matrix algebras September, 2025 23 / 64



III. Cli�ord algebras

The Cli�ord algebra Cℓ(V , f ) is graded by the cyclic group of order 2,
expressed as the sum of even and odd components:

Cℓ(V , f ) = Cℓ(V , f )
0
+ Cℓ(V , f )

1
, where

Cℓ(V , f )
0
= F · 1+

∞∑
n=1

V · · ·V︸ ︷︷ ︸
2n

, Cℓ(V , f )
1
=

∞∑
n=0

V · · ·V︸ ︷︷ ︸
2n+1

.

[N. Jacobson, 1968]

Suppose that the �eld F is algebraically closed, and the quadratic form f is

nondegenerate. If dimF V = d is an even integer, then the Cli�ord algebra

Cℓ(V , f ) ∼= M
2
d
2

(F) of 2
d
2 × 2

d
2 matrices over F.

If d is odd, then Cℓ(V , f ) ∼= M
2
d−1

2

(F)⊕M
2
d−1

2

(F).
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III. Cli�ord algebras

Very little is known about Cli�ord algebras Cℓ(V , f ) of in�nite-dimensional
vector spaces V .
The motivation comes from mathematical physics and C∗-algebras, for
example, in the sense of embedding Cℓ(V , f ) ↪→ C∗-algebra.

Remark

In particular, if F = R and the quadratic form f is positive-de�nite,
then Cℓ(V , f ) is a normed algebra.

Theorem 6 [O. B. � B. Oliynyk, 2021]

If V is in�nite-dimensional over an algebraically closed �eld and f is

nondegenerate, then Cℓ(V , f ) is a unital locally matrix algebra with

st
(
Cℓ(V , f )

)
= 2∞.
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III. Cli�ord algebras

Let dimF V = ℵ0. By Köthe's theorem, one then obtains a tensor-product
decomposition

Cℓ(V , f ) ∼=
∞⊗
i=1

(
�nite-dimensional matrix algebra

)
.

We will now present this decomposition explicitly.
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III. Cli�ord algebras

Decomposition of an in�nite-dimensional Cli�ord algebra.

Suppose that the �eld F is algebraically closed and the vector space V is
countably-dimensional. Choose an orthonormal basis

{vi}i∈N ⊂ V so that vivj + vjvi = 2 δij , i , j ∈ N.

Let
0 = n0 < n1 < n2 < · · ·

be any strictly increasing sequence of even integers, and set for each i ≥ 1

Vi = Span
(
vni−1+1, . . . , vni

)
.
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III. Cli�ord algebras

The subalgebra of Cℓ(V , f ) generated by Vi is isomorphic to Cℓ(Vi , f ), and
it is Z/2Z�graded:

Cℓ(Vi , f ) = Cℓ(Vi , f )0 + Cℓ(Vi , f )1.

Let ci = v1 · · · vni . Consider the subalgebras

A1 = Cℓ(V1, f ), Ai = Cℓ(Vi , f )0 ⊕ ci Cℓ(Vi , f )1 (i ≥ 2).

Theorem 7 [O. B., 2025]

Ai
∼= Cℓ(Vi , f ) for each i ∈ N; [Ai ,Aj ] = (0) for i , j ∈ N, i ̸= j ; and

Cℓ(V , f ) ∼=
⊗
i∈N

Ai .
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III. Cli�ord algebras

Up to now, the only examples of derivations and automorphisms of
Cℓ(V , f ) in the literature are:

1 inner derivations and inner automorphisms,
2 Bogolyubov derivations and Bogolyubov automorphisms.
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III. Cli�ord algebras

De�nition

Let φ be an invertible linear transformation φ : V → V that preserves the
quadratic form,

f (φ(v)) = f (v)

for an arbitrary element v ∈ V . It is easy to see that φ uniquely extends to
an automorphism of the algebra Cℓ(V , f ). Such automorphisms are called
Bogolyubov automorphisms.

De�nition

Let ψ : V → V be a skew-symmetric linear transformation, that is,

f (ψ(v),w) + f (v , ψ(w)) = 0 for all v ,w ∈ V .

The mapping ψ uniquely extends to a derivation of the algebra Cℓ(V , f ).
These derivations are called Bogolyubov derivations.
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III. Cli�ord algebras

De�nition

A derivation D of the algebra Cℓ(V , f ) is called even if

D(Cℓ(V , f )
0
) ⊆ Cℓ(V , f )

0
, D(Cℓ(V , f )

1
) ⊆ Cℓ(V , f )

1
;

and a derivation D of the algebra Cℓ(V , f ) is called odd if

D(Cℓ(V , f )
0
) ⊆ Cℓ(V , f )

1
, D(Cℓ(V , f )

1
) ⊆ Cℓ(V , f )

0
.

Remark

Note that Bogolyubov derivations of Cli�ord algebras are even.
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III. Cli�ord algebras

Let S={i1 < · · · < ir} be a set of positive integers. Denote vS = vi1 · · · vir .
The following theorem describes all derivations of Cℓ(V , f ) and creates
many new derivations (neither inner nor Bogolyubov).

Theorem 8 [O. B., 2025]

Let V be a countable-dimensional vector space over an algebraically closed

�eld F, and let vi , i ∈ N, be an arbitrary orthonormal basis of the space V .

(1) Any nonzero even derivation D of Cℓ(V , f ) can be uniquely

represented as a sum D =
∑

S αS ad(vS), 0 ̸= αS ∈ F,
where the subsets S are �nite nonempty subsets of N of even order,

and any i ∈ N lies in no more than �nitely many subsets S .

(2) Any nonzero odd derivation D of Cℓ(V , f ) can be uniquely represented

as a sum D =
∑

S αS ad(vS), 0 ̸= αS ∈ F,
where the subsets S are �nite subsets of N of odd order, and any

i ∈ N lies in all but �nitely many subsets S .
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III. Cli�ord algebras

Remark
1 Notice that a derivation D is inner if and only if the sum (1) or
(2) above is �nite.

2 A derivation D is Bogolyubov if and only if

D =
∑
i<j

αij ad(vivj), αij ∈ F,

where for each i ∈ N only �nitely many coe�cients αij , i < j ,
are nonzero.

Suppose the ground �eld is the �eld of real numbers R, and let f : V → R
be a positive-de�nite quadratic form.

Then Cℓ(V , f ) is a normed algebra.

The completion of Cℓ(V , f ) is a C∗-algebra.
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III. Cli�ord algebras

Question [M. Ludewig, MathOver�ow discussion 2022]

Is an arbitrary automorphism of the Cli�ord algebra continuous?

Using the decomposition of Theorem 7:

Theorem 9 [O. B., 2025]

There exists an automorphism of Cℓ(V , f ) that is not continuous with
respect to the topology induced by the norm.

Remark

Theorem 9 gives negative answer to the question of M. Ludewig.

This part is based on the paper:

[1] O.B., On Cli�ord Algebras of In�nite Dimensional Vector Spaces, Proceedings
XIV Ukraine Algebra Conference,Contemporary Math. AMS (2025). Q3
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IV. Algebras of in�nite matrices

Let Mn(F) denote the algebra of n × n matrices over the �eld F. Consider
the ascending chain of matrix algebras over a �eld F with embeddings:

M2(F) ↪→ M3(F) ↪→ · · ·Mn(F) ↪→ · · ·, Mn(F) →


∗ · · · ∗ 0
...
. . .

...
...

∗ · · · ∗ 0
0 · · · 0 0

∈ Mn+1(F).

Denote the union of of such matrix algebras

M∞(F) =
⋃
n≥1

Mn(F) =

{
in�nite N× N matrices having �nitely many nonzero entries } .
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IV. Algebras of in�nite matrices

Consider the algebra MN(F) =
{
N× N matrices having

�nitely many nonzero entries in each column
}
.

Then M∞(F) ⊂ MN(F).

Let M�n(F) =
{
N× N matrices having �nitely many nonzero entries

in each row and each column
}
.

Then M∞(F) ◁ M�n(F) ⊂ MN(F).

Remark

M∞(F) is a locally matrix algebra. In turn, the description of derivations
and automorphisms of locally matrix algebras is extensively used in the
study of derivations and automorphisms of algebras of in�nite matrices.
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IV. Algebras of in�nite matrices

Each associative algebra A gives rise to the Lie algebra

A− = (A, [a, b] = ab − ba) .

Hence, denoting by gl∞(F), gl�n(F) and glN(F) the corresponding Lie
algebras of the algebras M∞(F), M�n(F), and MN(F), we obtain

gl∞(F) ◁ gl�n(F) ⊂ glN(F).

De�nition

Recall that
sl∞(F) = [gl∞(F), gl∞(F)].
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IV. Algebras of in�nite matrices

The algebra M∞(F) is equipped with the transpose involution

t : (aij) 7→ (aji ),

and, on M2(F) in particular, also the symplectic involution

− :

(
α β
γ δ

)
7→

(
δ −β
−γ α

)
.

Therefore, we have M∞(F) ∼= M∞(M2(F)), sp : (aij) → (aji ).

This gives rise to Lie algebras of skew-symmetric elements

o∞(F) = {a ∈ M∞(F) | at = −a},

sp∞(F) = {a ∈ M∞(F) | sp(a) = −a}.

We obtain the in�nite orthogonal and symplectic Lie algebras.
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IV. Algebras of in�nite matrices

We will describe derivations and automorphisms of the following Lie
algebras:

sl∞(F), o∞(F), sp∞(F), gl�n(F), glN(F).

In the following two theorems we assume that charF ̸= 2.

Theorem 10 [O. B., 2022]

(a) An arbitrary derivation of the Lie algebra sl∞(F), o∞(F) or sp∞(F) is
of the type ad(a), where a ∈ glfin(F). For o∞(F) or sp∞(F) the
element a is skew-symmetric relative to the corresponding involution.

(b) All derivations of the Lie algebras glfin(F) and glN(F) are inner.

Remark

Theorem 10(a) for �elds of characteristic 0 is due to K.-H. Neeb (2005).
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IV. Algebras of in�nite matrices

Consider the group GL�n(F) = { a ∈ GLN(F) | a, a−1 ∈ M�n(F)}.

Theorem 11 [O. B., 2022]

(a) An arbitrary automorphism φ of the Lie algebra L = sl∞(F) is of the
type φ(x) = a−1xa, x ∈ L, or of the type φ(x) = −a−1x ta, x ∈ L,
where a ∈ GL�n(F).

(b) An arbitrary automorphism φ of the orthogonal (resp. symplectic) Lie

algebra L = o∞(F) (resp. sp∞(F)) is of the type φ(x) = a−1xa,
x ∈ L, where a ∈ GL�n(F) and a is orthogonal (resp. symplectic) with

respect to the de�ning involution.

(c) All automorphisms of gl�n(F) and of glN(F) are given by conjugation

by elements of GL�n(F) and GLN(F), respectively.

Remark

Theorem11(a),(b) for �elds of characteristic 0 is due to N. Stumme (2001).
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IV. Algebras of in�nite matrices

K.-H. Neeb and N. Stumme relied on the representation theory of

�nite-dimensional simple Lie algebras over a �eld of characteristic 0.

In positive characteristic, that theory becomes much more complicated.

Theorems 10 and 11 for �elds of characteristic ̸= 2 was proved in:
O.B., Automorphism and derivations of algebras of in�nite matrix, Linear Algebra
and Applications, 650(2) (2022), p.42-59. Q1

Our approach consists of two steps:

1 Representation of automorphisms of Lie algebras as combinations of

homomorphisms and anti-homomorphisms of the underlying

associative algebras. Here we rely on a series of papers by K. Beidar,
M. Bre²ar, M. Chebotar and W. Martindale, which prove Herstein's
conjectures.

2 Description of automorphisms and anti-automorphisms of the

underlying associative algebras.
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IV. Algebras of in�nite matrices

In the second step, characteristic is inelevant, but K. Beidar, M. Bre²ar,

M. Chebotar and W. Martindale assumed that the characteristic is ̸= 2.
This was the main di�culty, which was overcome in the joint paper:

O. B, I. Kashuba, E. Zelmanov, On Lie isomorphisms of rings,
Mediterranean Journal of Mathematics (2025) 22:80, Q2

which handled Lie isomorphisms of rings of arbitrary characteristic,
not necessarily unital.
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V. Mackey algebras and groups

We will talk about Mackey algebras.

Let V be an in�nite-dimensional vector space, and let
V ∗ = { f : V → F | f is linear functionals} be its dual space.

De�nition

A subspace W ⊆ V ∗ is called total if for all v ∈ V

(v | W ) = {w(v) | w ∈ W } = (0) ⇐⇒ v = 0.

For a total subspace W ⊆ V ∗, consider the subalgebra

A(V |W ) = {φ ∈ EndF(V ) | Wφ ⊆ W }.
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V. Mackey algebras and groups

De�nition

A linear transformation φ ∈ EndF (V ) is called �nitary if dimF φ(V ) <∞.

Consider A∞(V |W ) = {φ ∈ A(V |W ) | φ is �nitary}.

Remark

The algebra A∞(V |W ) is a nonunital locally matrix. In turn, the
description of derivations and automorphisms of locally matrix algebras is
extensively used in the study of derivations and automorphisms of Mackey
algebras and groups.
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V. Mackey algebras and groups

[G. Mackey, 1945]

If dimF V = dimFW = ℵ0, then:
1 A∞(V |W ) is isomorphic to the associative algebra M∞(F) of

countable matrices over a �eld F having �nitely many nonzero entries;
2 the algebra A(V |W ) is isomorphic to the associative algebra Mfin(F)

of countable matrices over a �eld F having �nitely many nonzero
entries in each row and in each column.

Remark

If total subspace W = V ∗, then

A(V |W ) = EndF(V ),

A∞(V |W ) = {all transformations of �nite range}.
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V. Mackey algebras and groups

Clearly,
A∞(V |W ) ◁ A(V |W ).

The algebra A∞(V |W ) gives rise to Lie algebras

gl∞(V |W ) =
(
A∞(V |W ), [φ,ψ] = φψ − ψφ

)
and

sl∞(V |W ) = [gl∞(V |W ), gl∞(V |W )].

Moreover, sl∞(V |W ) is an inductive limit of the �nite-dimensional simple
Lie algebras sl(n):

sl∞(V |W ) = lim−→
n

sl(n).
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V. Mackey algebras and groups

If V is equipped with a symmetric or skew-symmetric nondegenerate
bilinear form, then we consider orthogonal and symplectic Lie algebras
o(V |W ), sp(V |W ) and their �nitary versions o∞(V |W ), sp∞(V |W ).

De�nition

The algebras

A(V |W ), A∞(V |W ), gl∞(V |W ), sl∞(V |W ),

o(V |W ), sp(V |W ), o∞(V |W ), sp∞(V |W )

are called associative Mackey algebras and Lie Mackey
algebras, respectively.
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V. Mackey algebras and groups

Mackey algebras and groups arise in various classi�cations.

Baranov�Strade classi�cation [A. Baranov � H. Strade, 2002]

Proved that in�nite-dimensional simple �nitary Lie algebras over an
algebraically closed �eld of characteristic ̸= 2, 3 are:

1 sl∞(V |W ),
2 o∞(V |W ), sp∞(V |W ).

All algebras (1)-(2) are Mackey.

References:

[1] A.Baranov, H.Strade, Finitary Lie algebras, Journal of Algebra,
254(1) (2002), 173�211.
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V. Mackey algebras and groups

Let GL(V ) = {φ ∈ EndF (V ) | φ is invertible}.

De�nition

Similarly, we de�ne Mackey groups (of invertible elements):

GL(V |W ) = {φ ∈ GL(V ) | both φ and φ−1 lie in A(V |W )},

GL∞(V |W ) = (Id+A∞(V |W )) ∩ GL(V ),

SL∞(V |W ) = [ GL∞(V |W ), GL∞(V |W ) ];

orthogonal and symplectic groups: O(V |W ), SP(V |W ),
their �nitary versions: O∞(V |W ), SP∞(V |W ),
their special �nitary versions: SO∞(V |W ), Sp∞(V |W ), and the
corresponding special �nitary unitary groups: SU∞(V |W ), SpU∞(V |W ).

Here, Id is the identity transformation.Oksana Bezushchak Locally matrix algebras September, 2025 49 / 64



V. Mackey algebras and groups

Jonathan Hall's classi�cation [J. Hall, 1995, 2006]

Proved that in�nite simple �nitary torsion groups are:
1 Alt[X ], where X is an in�nite set,
2 SL∞(V |W ),
3 SO∞(V |W ), Sp∞(V |W ),
4 SU∞(V |W ), SpU∞(V |W ),

where ground �elf F is an algbraic extension of Fp = Z/pZ.

All groups (2)-(4) are Mackey.

References:

[1] J.Hall, Locally �nite simple groups of �nitary linear transformations,
in: B.Hartley, G.M.Seitz, A.V.Borovik, R.M.Bryant (Eds.), Finite and Locally
Finite Groups, Kluwer, Dordrecht, 1995, 219�246.

[2] J.Hall, Periodic simple groups of �nitary linear transformations,
Annals of Mathematics, 163 (2006), 445�498.
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V. Mackey algebras and groups

Description of the derivations of all in�nite-dimensional
simple �nitary Lie algebras (Mackey algebras) due to
Baranov-Strade classi�cation (for �elds of characteristic ̸= 2).

Theorem 12 (on Mackey algebras) [O. B., 2023]

Let charF ̸= 2. Derivations of each of the Mackey Lie algebras are adjoint

derivations

ad(a) : x 7→ [a, x ], where a ∈ A(V |W ).
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V. Mackey algebras and groups

Description of the automorphisms of all in�nite
simple �nitary torsion groups (Mackey groups) due to
Hall's classi�cation (for �elds of characteristic ̸= 2 or 3).

1 J. Schreier and S. Ulam (1933) described automorphisms of Alt[X ],
X an in�nite set.

Theorem 13 (on Mackey groups) [O. B., 2023]

Let charF ̸= 2, 3. An arbitrary automorphism φ of each of the �nitary

Mackey groups either lift to a ring automorphism of A∞(V |W ), or to
φ(g) = ψ((g−1)t), g ∈ SL∞(V |W ),

where ψ is a ring anti-automorphisms of A∞(V |W ).
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V. Mackey algebras and groups

This part is based on papers:

[1] O.B., Derivations of Mackey algebras,
Carpathian Mathematical Publications, 15(2) (2023), 559-562. Q2

[2] O.B., Automorphisms of Mackey groups,
Bulletin of Taras Shevchenko National University of Kyiv,
Series: Physics & Mathematics, 2 (2023), 16-19. Q4
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VI. Derivations of polynomial algebras in in�nitely many

variables

Now, we will discuss connections of Theorems 10 and 11 to
derivations of polynomial algebras.

Assume charF = 0.

Let A = F[x1, . . . , xn] be the polynomial algebra in n variables.

Any derivation d : A → A may be written uniquely as

d =
n∑

i=1

fi (x1, . . . , xn)
∂

∂xi
, fi ∈ A.

The set of all derivations of A is a Lie algebra under the commutator
[d1, d2] = d1d2 − d2d1, denoted W (n).
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VI. Derivations of polynomial algebras in in�nitely many

variables

[F. Takens, 1973, T.Morimoto, 1976]

Every derivation of the Lie algebra W (n) is inner.

[A. Rudakov, 1969]

Every automorphism of the Lie algebra W (n) is of the form

φ(d) = ψ−1 d ψ, ψ ∈ Aut(F[x1, . . . , xn]).

New proofs of these theorems were given by V. Bavula (2013).
The similar result was later proved by H. Kraft and A. Regeta (2014) in
group-theoretic terms.
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VI. Derivations of polynomial algebras in in�nitely many

variables

Consider the ascending chain of polynomial subalgebras:

F[x1] ⊂ F[x1, x2] ⊂ · · · ⊂ F[x1, . . . , xn] ⊂ · · · .
We have the ascending chain of Lie algebras:

W (1) ⊂ W (2) ⊂ · · · ⊂ W (n) ⊂ · · · .
Let

W (∞) =
⋃
n≥1

W (n).

Consider the countable set of variables X = {x1, x2, . . . } and the
polynomial algebra F[X ]. Then

W (∞) ⊂ Der (F[X ]), where

Der (F[X ]) =
{ ∞∑

i=1

fi (x1, x2, . . . )
∂

∂xi

∣∣∣ fi ∈ F[X ]
}
with possibly in�nite sums.
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VI. Derivations of polynomial algebras in in�nitely many

variables

[D.�. Dokovi¢ � K. Zhao, 1998]

Every derivation d of the Lie algebra L = Der (F[X ]) is locally inner, i.e.
for every �nite-dimensional subspace V ⊂ L there exists an element x ∈ L
such that

d(v) = [x , v ] for all v ∈ V .

A stronger result holds as well.

Theorem 14 [O. B. � I. Kashuba, 2025]

Every derivation of the Lie algebra Der (F[X ]) is inner.
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VI. Derivations of polynomial algebras in in�nitely many

variables

Question

What about derivations of W (∞)? Are they all inner? No.

Consider the Lie algebra

W�n =
{ ∞∑

i=1

fi (x1, x2, . . . )
∂

∂xi

∣∣ fi ∈ F[X ],

each xi occurs in only �nitely many fj , j ≥ 1
}
.

Then W (∞) ⊂ W�n ⊂ DerF[X ].

Remark

The description of derivations of W (∞) is closer �in some sense� to the
description of derivations of locally matrix algebras.
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VI. Derivations of polynomial algebras in in�nitely many

variables

Now consider the �tails� of the polynomial algebra:

F[xn, xn+1, . . . ] ⊂ F[X ].

Clearly, ⋂
n≥1

F[xn, xn+1, . . . ] = (0).

Hence, these �tails� de�ne a topology on the vector space F[X ]
(though F[X ] is not a topological algebra).
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VI. Derivations of polynomial algebras in in�nitely many

variables

Therefore,

W�n = {derivations of F[X ] that are continuous in this topology}.

The algebra W (∞) is an ideal in W�n. Hence, any element a ∈ W�n

de�nes a derivation

da : W (∞) −→ W (∞), da(x) = [x , a].

Theorem 15 [O.B. � I. Kashuba, 2025]

Every derivation of the Lie algebra W (∞) is of the form

da(x) = [x , a], a ∈ W�n.

In particular,
Der

(
W (∞)

) ∼= W�n.
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VI. Derivations of polynomial algebras in in�nitely many

variables

Question [D.�.Dokovi¢ � K. Zhao, 1998]

Is the Lie algebra Der (F[X ]) simple?

Conjecture [O. B.]

Aut
(
W (∞)

)
={

adψ : d 7→ ψ−1dψ
∣∣ ψ ∈ Aut

(
F[X ]

)
, ψ and ψ−1 are both continuous

}
.

This part is based on the paper:

[1] O.B., I.Kashuba, Derivations of Lie Algebras of Vector Fields in
In�nitely Many Variables, arXiv:2507.04541 (2025).
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This talk is based on papers:

1 O.B., B.Oliynyk, Primary decompositions of unital locally matrix
algebras, Bulletin of Mathematical Sciences, 10(1) (2020). Q1

2 O.B., B.Oliynyk, Unital locally matrix algebras and Steinitz numbers,
Journal of Algebra and Its Applications, 19(9) (2020). Q2

3 O.B., Derivations and automorphisms of locally matrix algebras,
Journal of Algebra, 576 (2021), 1-26. Q1

4 O.B., Automorphism and derivations of algebras of in�nite matrix,
Linear Algebra and Applications, 650(2) (2022), 42-59. Q1

5 O.B., W.Golubowski, B.Oliynyk, Ideals of general linear Lie algebras of
in�nite-dimensional vector spaces, Proceedings of the American

Mathematical Society, 151 (2023), 467-473. Q1
6 O.B., Automorphisms of Mackey groups, Bulletin of TSNU of Kyiv,

Series: Physics & Mathematics, 2 (2023), 16-19. Q4
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This talk is based on papers:

7 O.B., Derivations of Mackey algebras, Carpathian Mathematical

Publications, 15(2) (2023), 559-562. Q2
8 O.B, A.Petravchuk, E.Zelmanov, Automorphisms and derivations of

commutative and PI algebras, Transactions of the American

Mathematical Society, 377(2) (2024), 1335-1356. Q1
9 O.B, I.Kashuba, E.Zelmanov, On Lie isomorphisms of rings,

Mediterranean Journal of Mathematics (2025) 22:80. Q2
10 O.B., On Cli�ord Algebras of In�nite Dimensional Vector Spaces,

Proceedings XIV Ukraine Algebra Conference, American Mathematical

Society: Contemporary Mathematics (2025). Q3
11 O.B., I.Kashuba, Derivations of Lie Algebras of Vector Fields in

In�nitely Many Variables, arXiv:2507.04541 (2025).
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